A proapoptotic peptide derived from reovirus outer capsid protein {micro}1 has membrane-destabilizing activity.

نویسندگان

  • Jae-Won Kim
  • Sangbom M Lyi
  • Colin R Parrish
  • John S L Parker
چکیده

The reovirus outer capsid protein μ1 is responsible for cell membrane penetration during virus entry and contains determinants necessary for virus-induced apoptosis. Residues 582 to 611 of μ1 are necessary and sufficient for reovirus-induced apoptosis, and residues 594 and 595 independently regulate the efficiency of viral entry and reovirus-induced cell apoptosis, respectively. Two of three α-helices within this region, helix 1 (residues 582 to 611) and helix 3 (residues 644 to 675), play a role in reovirus-induced apoptosis. Here, we chemically synthesized peptides representing helix 1 (H1), H1:K594D, H1:I595K, and helix 3 (H3) and examined their biological properties. We found that H1, but not H3, was able to cause concentration- and size-dependent leakage of molecules from small unilamellar liposomes. We further found that direct application of H1, but not H1:K594D, H1:I595K, or H3, to cells resulted in cytotoxicity. Application of the H1 peptide to L929 cells caused rapid elevations in intracellular calcium concentration that were independent of phospholipase C activation. Cytotoxicity of H1 was not restricted to eukaryotic cells, as the H1 peptide also had bactericidal activity. Based on these findings, we propose that the proapoptotic function of the H1 region of μ1 is dependent on its capacity to destabilize cellular membranes and cause release of molecules from intracellular organelles that ultimately induces cell necrosis or apoptosis, depending on the dose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disulfide bonding among micro 1 trimers in mammalian reovirus outer capsid: a late and reversible step in virion morphogenesis.

We examined how a particular type of intermolecular disulfide (ds) bond is formed in the capsid of a cytoplasmically replicating nonenveloped animal virus despite the normally reducing environment inside cells. The micro 1 protein, a major component of the mammalian reovirus outer capsid, has been implicated in penetration of the cellular membrane barrier during cell entry. A recent crystal str...

متن کامل

Thermolabilizing pseudoreversions in reovirus outer-capsid protein micro 1 rescue the entry defect conferred by a thermostabilizing mutation.

Heat-resistant mutants selected from infectious subvirion particles of mammalian reoviruses have determinative mutations in the major outer-capsid protein micro 1. Here we report the isolation and characterization of intragenic pseudoreversions of one such thermostabilizing mutation. From a plaque that had survived heat selection, a number of viruses with one shared mutation but different secon...

متن کامل

Proteolytic Disassembly of Viral Outer Capsid Proteins Is Crucial for Reovirus-Mediated Type-I Interferon Induction in Both Reovirus-Susceptible and Reovirus-Refractory Tumor Cells

Oncolytic reovirus induces innate immune responses, which contribute to the antitumor activity of reovirus, following in vivo application. Reovirus-induced innate immune responses have been relatively well characterized in immune cells and mouse embryonic fibroblasts cells; however, the mechanisms and profiles of reovirus-induced innate immune responses in human tumor cells have not been well u...

متن کامل

Reovirus infection or ectopic expression of outer capsid protein micro1 induces apoptosis independently of the cellular proapoptotic proteins Bax and Bak.

Mammalian orthoreoviruses induce apoptosis in vivo and in vitro; however, the specific mechanism by which apoptosis is induced is not fully understood. Recent studies have indicated that the reovirus outer capsid protein μ1 is the primary determinant of reovirus-induced apoptosis. Ectopically expressed μ1 induces apoptosis and localizes to intracellular membranes. Here we report that ectopic ex...

متن کامل

Cell entry-associated conformational changes in reovirus particles are controlled by host protease activity.

Membrane penetration by reovirus requires successive formation of two cell entry intermediates, infectious subvirion particles (ISVPs) and ISVP*s. In vitro incubation of reovirus virions with high concentration of chymotrypsin (CHT) results in partial digestion of the viral outer capsid to form ISVPs. When virions are instead digested with low concentrations of chymotrypsin, the outer capsid is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 85 4  شماره 

صفحات  -

تاریخ انتشار 2011